

# Configuring TFmini-Plus with IIC Interface on Ardupilot Flight Stack using PixHawk1 Flight Controller

www.benewake.com Benewake (Beijing) Co., Ltd. TFmini-Plus can be connected with the IIC port of PixHawk1. It can be interfaced with flight controller for the purpose of **Altitude Holding** or **Obstacle Avoidance** (both will be explained in this document). At the time of writing this document the controller used was PixHawk1 flashed with ArduCopter V4.0.4. But this document can be used with other flight controllers running with different ArduCopter firmware versions with slight modification in parameter names and choosing the right port on flight controller.

## 1. **TFmini-Plus Settings**:

Note: If there are fluctuations in readings then set the **frame rate** to 250Hz otherwise don't need for it. Please see the details of "frame rate" and changing the communication interface in Section-7.4 table-11.

Standard output mode of LiDAR should be used instead of PIX mode in the latest firmwares. PIX mode was only required for the firmware versions older than Arducopter V3.6.2.

The default communication of TFmini-Plus is TTL, IIC and TTL uses the same cable, so please set TFmini-Plus to IIC communication first, see detail commands in product manual.

We take two TFmini-Plus as an example (for obstacle) avoidance in this tutorial and set the address 0x10 and 0x11 separately.

#### Note :

1. Default cable sequence of TFmini-Plus and PixHawk1 are different, please change it accordingly (SDA and SCL wires need to be interchanged). Look at the pinout of controller, pin configurations are starting from left to right:

| Pin     | Signal | Volt           |
|---------|--------|----------------|
| 1 (red) | VCC    | +5V            |
| 2 (blk) | SCL    | +3.3 (pullups) |
| 3 (blk) | SDA    | +3.3 (pullups) |
| 4 (blk) | GND    | GND            |

- 2. IIC connector should be purchased by user
- 3. If TFmini-Plus faces down, please take care the distance between lens and ground should be larger than TFmini-Plus's blind zone (10cm)
- 4. If more TFmini-Plus need to be connected (10 LiDARs can be connected), the method is same.
- Power source should meet the product manual demands:5V±0.5V, larger than 140mA\*number of TFmini-Plus



# 2. PixHawk1 Connection:

See the connection details in PixHawk1 manual and TFmini-Plus manual, we take example for connecting PixHawk1 flight controller:



Figure 1: Schematic Diagram of Connecting Two TFmini-Plus to I2C Interface of PixHawk1

# 3. Parameters settings (Obstacle Avoidance):

Connect the flight control board to Mission Planar. Select [CONFIG/TUNING] and then click on [Full Parameter List] in the left from the below bar. Find and modify the following parameters:

| Flight Modes<br>GeoFence | Roll/Pitch Sensitivity:<br>Slide to the right if the copter is sluggish or slide to the left if the copter<br>is twitchy. |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Basic Tuning             | 0.1350 🚖                                                                                                                  |
| Extended Tuning          | 0.05 0.5                                                                                                                  |
| Standard Params          |                                                                                                                           |
| Advanced Params          |                                                                                                                           |
| User Params              |                                                                                                                           |
| Full Parameter List      |                                                                                                                           |
| Full Parameter Tree      |                                                                                                                           |
| Planner                  |                                                                                                                           |
|                          |                                                                                                                           |
|                          |                                                                                                                           |
|                          |                                                                                                                           |



#### Attention: distance between UAV margin and LiDAR should be larger than LiDAR non-detection zone.

#### **Common settings:**

AVOID\_ENABLE= 3 [if 3 = UseFence and UseProximitySensor doesn't work in IIC then choose 2 = UseProximitySensor]

AVOID\_MARGIN=4

PRX\_TYPE=4

#### **Settings for first TFmini-Plus:**

RNGFND1 ADDR=16 [Address of #1 TFmini-Plus in decimal]

RNGFND1\_MAX\_CM=400 [It could be changed according to real application requirement but should be smaller than effective measure range of LiDAR, unit is cm]

RNGFND1\_MIN\_CM=30 [It could be changed according to real application requirement and should be larger than LiDAR non-detection zone, unit is cm]

RNGFND1 ORIENT=0 [#1 TFmini-Plus real orientation]

RNGFND1\_TYPE = 25 [TFmini-Plus IIC same as TFmini-S IIC]

#### Settings for second TFmini-Plus:

RNGFND2\_ADDR=17 [Address of #2 TFmini-Plus in decimal]

RNGFND2\_MAX\_CM=400

RNGFND2 MIN CM=30

RNGFND2\_ORIENT=1 [#2 TFmini-Plus real orientation]

RNGFND2\_TYPE=25 [TFmini-Plus IIC same as TFmini-S IIC]

Upon setting of these parameters, click [Write Params] on the right of mission planner to finish. After writing the parameters you need to power off the controller and then turn it on to apply the setting changes.

If the error message "**PreArm: check the proximity sensor**" appears, please check if the connection is correct, the power supply is normal and have you restarted the controller. Also check it whether you have changed the mode from **Standard mode** to **Pix mode** while the firmware is **3.6.2 or higher** if yes then the same error will encounter.





How to see the target distance from the LiDAR: press Ctrl+F button in keyboard, the following window will pop out:

| 🖳 temp            |                                               |         |                 |                     | - | נ             | ×    |
|-------------------|-----------------------------------------------|---------|-----------------|---------------------|---|---------------|------|
| Geo ref images    | Geo Refrence photos                           |         |                 | 30 5780             | i | Pawaan I<br>L | 04.U |
| Warning Manager   | Create custom audio warnings                  |         | siti            |                     |   |               |      |
| Follow Me         | use a nmea gps to follow me                   |         | streamcombi     |                     |   |               |      |
| NMEA              | outputs the may location in nmea              |         | Inject GPS      |                     |   |               |      |
| MicroDrone        | outputs the may location in microdrone format |         | FFT             |                     |   |               |      |
| Mavlink           | mirrors the mavlink stream received by mp     |         | TD              |                     |   |               |      |
| Param gen         | regenerage the param info used inside mp      |         | 10              |                     |   |               |      |
| Lang Edit         | translation language editor                   |         | pixhawk         | OFFICIL PLOT        |   |               |      |
| OSDVideo          | overlay the hud into your recorded videos     |         | QNH             | VESION POSITION     |   |               |      |
| Moving Base       | show an extra icon on the map of your current |         | Sequence        |                     |   |               |      |
| Shn to Poly       | convert shp file ot a polygon file            |         | Swarm           |                     |   |               |      |
|                   | output the may location into xplanes          | nk In   | vlc             |                     |   |               |      |
| Swarm             | multi mav swarm interface                     | -       | estroop         |                     |   |               |      |
| Follow the leader | follow the leader swarm                       |         | Sant ean        |                     |   |               |      |
| MAVSorial pass    | create a exclusive passthrough to the gps     |         | Data            |                     |   |               |      |
|                   | remove all apm drivers                        |         | l'aram gen      | XY POSITION CONTROL |   |               |      |
| Sort TLogs        | sort tlogs into there type and sysid          |         | cust            | Notice Artests      |   |               |      |
| rin all fu        | download all current fw's                     |         | signing         |                     |   |               |      |
| Triest GE         | add custom imagery to mp                      |         | calib           | RC RECEIVER         |   |               |      |
| Clear Custon Mans | wipe custom imagery                           |         |                 |                     |   |               |      |
| crear custom maps | struct conversion speed test                  |         | sphere          |                     |   |               |      |
| Torollow          |                                               |         | mag calb<br>log |                     |   |               |      |
| Dasmare           | guad: arm and takeoff                         |         | extract         |                     |   |               |      |
| arm and takeoff   | run the simbal pointing also                  |         | gns inject      |                     |   |               |      |
| gimbal test       | create man ing's for all tlogs in a dir       |         | Proximity       | TERRAIN             |   |               |      |
| map Togz          | tlog browser                                  |         | FOLLOW          | BETTERSE NOTOR      |   |               |      |
| Logindex          | trad provider                                 |         | Swarm           |                     |   |               |      |
| GST test          | DEM Sop logs Cust                             | om GDAL | Custom DTED     |                     |   |               |      |



Click button *Proximity*, the following window will appear:



The number in green color means the distance from LiDAR in obstacle avoidance mode (it doesn't mean the real time distance from LiDAR and will not be influenced in Mission Planner. The mission planner version at the time of writing this tutorial was v1.3.69.

### 4. Parameters settings (Altitude Hold):

Connect the flight control board to Mission Planar. Select [CONFIG/TUNING] and then click on [Full Parameter List] in the left from the below bar. Find and modify the following parameters:





**Note**: If RNGFND1 and RNGFND2 are already configured then use RNGFND3 or other as Altitude Hold Sensor.

RNGFND1\_ADDR=18

RNGFND3\_TYPE = 25 [TFmini-Plus IIC option]

RNGFND3\_MIN\_CM = 30 [It could be changed according to real application requirement and should be greater LiDAR than non-detection zone, unit is cm]

RNGFND3\_MAX\_CM = 300 [It could be changed according to real demands but should be smaller than effective measure range of LiDAR, unit is cm]

RNGFND3\_GNDCLEAR = 15 [expressed in cm, depending upon mounting height of the module and should be greater LiDAR than non-detection zone]

RNGFND3\_ORIENT=25 [facing down]

Upon setting of these parameters, click [Write Params] on the right of mission planner to finish. After writing the parameters you need to power off the controller and then turn it on to apply the setting changes.

If the error message "**Bad LiDAR Health**" appears, please check if the connection is correct, the power supply is normal and have you restarted the controller? Also check it whether you have changed the mode from **Standard mode** to **Pix mode** while the firmware is 3.6.2 or higher if yes then the same error will encounter.



www.benewake.com

How to see the altitude value from LiDAR sensor: double click the area of the Mission Planner, look at the following picture:



Select option *sonarrange*, see following picture:

| 🛃 Display This |                    |      |           |                   |               |                 |                  |                | Х                 |
|----------------|--------------------|------|-----------|-------------------|---------------|-----------------|------------------|----------------|-------------------|
| accel_cal_x    | 🗸 az3              | d    | h11out    | ch7out            | gimballng     | gz gz           | my               | remnoise       | ter_space         |
| accel_cal_y    | AZToMAV            | _ c. | h12in     | ch8in             | gpsh_acc      | gz2             | my2              | remotesnrdb    | timeInAir         |
| accel_cal_z    | battery_cell1      | d    | h12out    | ch8out            | gpshdg_acc    | gz3             | my3              | remrssi        | timeInAirMinSec   |
| accelsq        | battery_cell2      | d    | h13in     | ch9in             | gpshdop       | HomeAlt         | mz               | roll           | timesincelastshot |
| accelsq2       | battery_cell3      | d    | h13out    | ch9out            | gpshdop2      | hori zondi st   | mz2              | rpm1           | toh               |
| accelsq3       | battery_cell4      | c.   | h14in     | climbrate         | gpsstatus     | hwvoltage       | mz3              | rpm2           | tot               |
| airspeed       | battery_cell5      | c.   | h14out    | crit_AOA          | gpsstatus2    | i2cerrors       | nav_bearing      | rssi           | turnrate          |
| alt 🗌          | battery_cell6      | c.   | h15in     | current           | gpsv_acc      | KIndex          | nav_pitch        | rxerrors       | vertical speed    |
| alt_error      | battery_kmleft     | d    | h15out    | current2          | gpsvel_acc    | lat             | nav_roll         | rxrssi         | vibex             |
| altasl         | 📕 battery_mahperkm | c.   | h16in     | DistFromMovingBas | groundcourse  | lat2            | noise            | satcount       | vibey             |
| altasl2        | battery_remaining  | d    | h16out    | DistRSSIRemain    | groundcourse2 | linkqualitygos  | opt_m_x          | satcount2      | vibez             |
| altd100        | battery_temp       | c.   | hlin      | DistToHome        | groundspeed   | lng             | opt_m_y          | satcountB      | vlen              |
| altd1000       | 🗖 battery_usedmah  | c.   | hlout     | distTraveled      | groundspeed2  | lng2            | packetdropremote | servovoltage   | vx                |
| altoffsethome  | battery_usedmah2   | c    | h2in      | ekfcompv          | gx            | load            | 🗖 pi dachi eved  | sonarrange     | 🗌 ту              |
| AOA 📃          | battery_voltage    | c.   | h2out     | ekfflags          | gx2           | 🗌 localsnrdb    | 🗖 pi dD          | sonarvoltage   | ٧z                |
| aspd_error     | battery_voltage2   | c.   | h3in      | ekfposhor         | gx3           | mag_declination | piddesired       | speedup        | watts             |
| asratio        | ber_error          | c.   | h3out     | ekfposvert        | ∎ ¢v          | mag_ofs_x       | pi dff           | SSA            | wind_dir          |
| ax             | boardvoltage       | c.   | h3percent | ekfstatus         | <b>≣</b> ø⁄2  | mag_ofs_y       | 🔤 pi dI          | target_bearing | wind_vel          |
| ax2            | brklevel           | c.   | h4in      | ekfteralt         | <b>gy</b> 3   | mag_ofs_z       | 🗖 pi dP          | targetairspeed | wp_dist           |
| ax3            | campointa          | d    | h4out     | ekfvelv           | gyro_cal_x    | magfield        | pitch            | targetalt      | wpno              |
| ay ay          | campointb          | c.   | h5in      | ELT oMAV          | gyro_cal_y    | magfield2       | press_abs        | targetaltd100  | xtrack_error      |
| ay2            | campointc          | _ c  | h5out     | 🗖 fixedp          | gyro_cal_z    | magfield3       | press_temp       | ter_alt        | yaw               |
| ay3            | ch10in             | d    | h6in      | freenen           | gyrosq        | mx              | radius           | ter_curalt     |                   |
| az             | ch10out            | c.   | h6out     | GeoFenceDist      | gyrosq2       | mx2             | raw_press        | ter_load       |                   |
| az2            | ch11in             | d    | h7in      | gimballat         | gyrosq3       | <b>mx</b> 3     | raw_temp         | ter_pend       |                   |



The altitude distance from the LiDAR will be displayed in Sonar Range (meters), see the following picture:



