

TFmini-i User Manual

PREFACE

Dear users:

Thank you for choosing Benewake products. For the purpose of offering better operation experience to you, we hereby write this manual for an easier and simpler operation of our product, hoping to better solve the common problems you may meet. This user manual contains the relevant information on product introduction, usage and maintenance of TFmini-i, covers the product operation introduction and common problem solutions. Please read this manual carefully before using the product. Remember the precautions to avoid hazards, and please follow the described steps in the manual when using it.

If you have any problems in the process of usage, you are welcome to contact Benewake at any time for help.

Contact Details

Official website: en.benewake.com

TEL: +86-10-57456983

Technical questions, please contact: support@benewake.com

Consult sale information or request brochure, please contact: bw@benewake.com

Headquarters Address

Benewake (Beijing) Co., Ltd.

3rd Floor, Haiguo Jiaye Sci-Tech Park, Haidian District, Beijing, China

Copyright Statement

This User Manual is copyright © of Benewake. Please do not modify, delete or translate the description of this manual contents without the official written permission from Benewake.

Disclaimer

As our products are constantly improving and updating, the specifications of TFmini-i are subject to change. Please refer to the official website for latest version.

CONTENTS

1	ov	ERVIEW	l	1	
	1.1	Tech	nical Specification	1	
	1.2		tenance and Cleaning		
	1.3		earance and Installation		
	1.4		age		
	1.5		ication		
2	INT				
	2.1	Desc	ription About Wiring Sequence	5	
	2.2		rical Characteristics		
3	COMMUNICATION PROTOCOL				
	3.1	RS-4	85 Communication Protocol	6	
		3.1.1	Communication protocol		
		3.1.2	Parameter configuration description of Modbus protocol		
		3.1.3	Parameter configuration	8	
	3.2	CAN	Communication Protocol	10	
		3.2.1	Communication Protocol	10	
		3.2.2	CAN Communication Data Frame	11	
		3.2.3	CAN Bus Network	11	
		3.2.4	Parameter Configuration of CAN Communication	12	
		3.2.5	Other Parameter Configuration	12	

1 OVERVIEW

TFmini-i is an updated single-point ranging LiDAR based on TFmini-S. It has been optimized in communication interface and input voltage, making it satisfy different industrial applications. The product is based on the ToF (Time of Flight) principle and provides stable, accurate and reliable ranging performance.

1.1 Technical Specification

Table 1- 1 Technical Specification of TFmini-i

Туре		Parameters	Values	
		90% reflectivity, 0Klux	0.1m~12m	
	Operating	10% reflectivity, 0Klux	0.1m~7m	
	range	90% reflectivity, 70Klux	0.1m~12m	
Product		10% reflectivity, 70Klux	0.1m~7m	
performance		Accuracy①	±6cm (0.1m~6m) , ±1% (6m~12m)	
periorilance	Dista	ance resolution①	1cm	
		Frame rate②	1Hz~100Hz (adjustable, default100Hz)	
	Ambi	ent light immunity	70Klux	
	Er	nclosure rating	IP65	
	Photobiological safety		Class1 (IEC60825)	
Optical	Central wavelength		850nm	
parameters	Light source		VCSEL	
		FoV3	2°	
	Supply voltage		DC 7V~30V	
Electrical	Av	verage current	≤65mA @12V	
parameters	Pow	er consumption	≤0.8W @12V	
	Peak current		100mA	
		Dimension	50mm×34mm×41mm (L×H×W)	
		Housing	ABS/PC/PMMA	
Others	Opera	ating temperature	-20℃~60℃	
Others	Stor	age temperature	-30℃~75℃	
		Weight	52g (with cables)	
	Cable length@		70cm/200cm	

Note

- ① The detection is measured with the standard white board (90% reflectivity).
- 2 The frame rate can be adjusted. The default value is 100Hz and the maximum value is 100Hz, the customized frame rate should be calculated by the formula: 200/n (n is an integer with ≥ 2).
- 3 The angle is a theoretical value, the actual angle value has some deviation.
- ② 200cm cable without terminals at the end, for the loose wire state.

1.2 Maintenance and Cleaning

- Before switching on, please check if the exposed window mirror is clean, and clean it promptly if it is dirty.
- After using the device, check the optics. If it is contaminated, please clean it promptly.
- The optics should be cleaned regularly if the device be operated in a severe environment for a long time.
- Before regular cleaning, please disconnect the power. Using a soft cloth to gently
 wipe the window in the same direction when the device is not operating, to avoid
 repeated wiping and damage to the window mirror.
- When cleaning the window, do not use alcohol to clean, so as not to damage the window.
- If you require deep cleaning of internal optics, please contact bw@benewake.com to offer professional advice.

1.3 Appearance and Installation

The appearance and dimensions of TFmini-i are shown in Figure 1- 1:

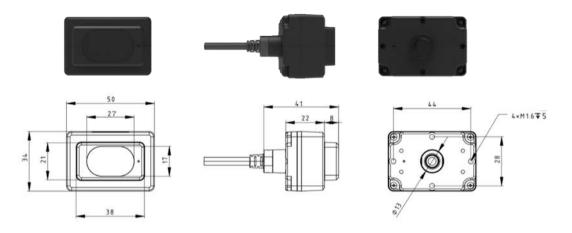


Figure 1- 1 Appearance and dimension of TFmini-i (Unit: mm)

TFmini-i has four ϕ 1.6 mounting screw holes in the back, hole depth of 5mm, as shown in Figure 1- 2. The installation is recommended to use four M2 cross round head flat-tailed self-tapping screws, the length of the screws is related to the thickness of the installed structural parts, it is recommended that the depth of the screws installed more than 3mm, you can choose the screws according to the following table.

Figure 1- 2 The mounting holes of TFmini-i

Table 1- 2 TFmini-i mounting screw model recommendation

The thickness of the installed structural parts	Recommended screw type
≤1mm	M2*4
1mm~3mm	M2*6
3mm~5mm	M2*8

Warning

- Two sizes of screws, M2*6 and M2*8, are included in the package, please choose according to the actual situation.
- ② Do not use excessively long screws to prevent penetration of the product housing and compromise the protective characteristics of the product.
- 3 To prevent the optical surface from being dirty, the product optical

- window will be pasted with dustproof film, it is recommended to remove the film before use.
- Please do not block the front of the product optical lens, the front surface of the product is recommended to be flush with the surrounding structural parts to prevent affecting the light path.

1.4 Storage

- Device should be stored at -30°C to 80°C with a relative humidity ≤ 60% and ventilation free from corrosive gases.
- Before storage, please make sure that all connections are disconnected or dust covers are inserted or covered to ensure cleanliness.
- If storage time is over three months, please carry out a working test before using, to ensure that the device can be used in normal condition.
- For ensuring the product performance, do not open the product shell or remove the IR-pass filter.

1.5 Application

When using the product, please read the specifications, user manual and the precautions mentioned in the user manual in detail to ensure that the product is used within the rated specifications. The product is designed for use in the following scenarios:

- Robot
- Intelligent Transportation
- Intelligent Device
- UAV
- Other Industrial Products

If you use the product beyond the above application scope, please carefully evaluate whether the reliability requirements of the product to be applied match this product, or contact Benewake at any time to assist in solving it.

2 INTERFACE

2.1 Description About Wiring Sequence

Terminal model: MH1.25-7P-W/B, size of single wire is AWG26, diameter of single wire is 0.404mm, cross-sectional area is 0.129mm2, which show in Table 2- 1.

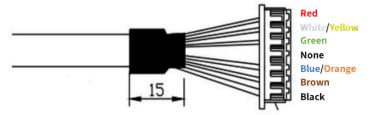


Figure 2- 1 TFmini-i external wiring connector and wiring sequence

Table 2- 1 The Function Description of Each Wire

Pin	Wiring color	Function	Comment
1	Red	VCC	Power supply
2	White/Yellow	RS485-B/CAN_L	RS485-B/CAN bus
3	Green	RS485-A/CAN_H	RS485-A/CAN bus
4	N/A	N/A	N/A
5	Blue/Orange	UART_RXD	UART receive (Debug)
6	Brown	UART_TXD	UART transmit (Debug)
7	Black	GND	Ground

Warning

- ① The hardware of RS-485 and CAN is different;
- ② Do not mix UART cable with RS485 or CAN bus, otherwise it will cause damage of MCU.
- 3 TFmini-i with RS-485 interface does not support UART debugging pins.

2.2 Electrical Characteristics

Table 2- 2 Main Electrical Parameters of TFmini-i

Parameter	Values
Supply voltage	DC 7V~30V
Average current	≤65mA@12V
Peak current	100mA
Average power consumption	≤0.8W@12V

3 COMMUNICATION PROTOCOL

There are two communication interfaces available. The hardware of RS485 and CAN is different. The interface cannot be switched by command.

3.1 RS-485 Communication Protocol

3.1.1 Communication protocol

Modbus protocol is the default setting for RS-485 interface. The parameter is shown in Table 3- 1. The default value of baud rate and slave ID is 115200 and 0x01.

Table 3- 1 RS-485 Communication protocol of TFmini-i

Characteristics	Values
Communication interface	RS-485
Baud rate	115200
Data bit	8
Stop bit	1
Parity	None

Note

The following baud rates are supported: 9600, 14400, 19200, 38400, 43000, 57600, 768000, 115200(default), 128000, 230400, 256000. It is not recommended to use a baud rate above 115200 for communication because of communication stability.

3.1.2 Parameter configuration description of Modbus protocol

3.1.2.1 Description of data frame

When Modbus protocol of TFmini-i is enabled, the Modbus command format of reading distance is shown in Table 3- 2.

Table 3- 2 The command format of reading distance

Addr.	Function code	Registe	r Addr.	Registe	r Value	CRC_Low	CRC_High
01(Default)	03	00	00	00	01	XX	XX

The response data frame format is shown in Table 3-3.

Table 3- 3 The response date frame format

Addr.	Function code	Length	Dist_High	Dist_Low	CRC_Low	CRC_High
01(Default)	03	02	XX	XX	XX	XX

3.1.2.2 Function code

The function code of TFmini-i is shown in Table 3-4.

Table 3- 4 The function code

Function Code	Description
03	Read register
06	Write register

3.1.2.3 Register address list

- All register addresses are hexadecimal and register values are 16 bits;
- After setting parameter, save and restart to take effect.

Register address list using function code: 0x03(read only)

Table 3- 5 Register address of function code (0x03)

Register Addr.	Definition	Description
00 00	Dist	Distance value, unit: cm
00 01	Strength	Signal strength
00 03 High 16 bits of timestamp		High 2 bytes of time stamp, unit: ms
00 04	Low 16 bits of timestamp	Low 2 bytes of time stamp, unit: ms
00 06	High 16 bits of firmware version	0x00 and main version number
00 07	Low 16 bits of firmware version	Sub-version and revised version number

Register address list using function code: 0x06(write only):

Table 3- 6 Register address of function code (0x06)

Register Addr.	Definition	Description
00 80	Save setting	Write any value to save settings
	Power off/Reboot	Register value:
00 81		0x00: power off (Not currently supported)
		0x01: reboot
00 82	Disable Modbus	Register Value:
00 82		0x01: Disable Modbus
00 83	High 16 bits of band rate	Set baud rate, save and reboot to take
00 83	High 16 bits of baud rate	effect

00 84	Low 16 bits of baud rate	Set baud rate, save and reboot to take
		effect
00 85	Slave ID	Set slave ID, save and reboot to take effect
00 03	Stave 1D	(default 0x01)
00 86	Frame rate	Set frame rate, save and reboot to take
00 80	Frame rate	effect (default 100Hz)
	Working mode	Set working mode, save and reboot to take
00 87		effect. Register value:
00 87		0x00: continuous detection mode (default)
		0x01: triggering mode
	Low power consumption mode	Set low power consumption mode, save
		and reboot to take effect. Register value:
00 88		0x00: Disable (default)
		0x0N: Enable, N is a positive integer with ≤
		10,which is sampling frequent of TFmini-i
00.00	Restore default	Write any value, save and reboot to take
00 89	Restore defautt	effect

3.1.3 Parameter configuration

Table 3- 7 General command of RS-485 serial communication mode

Function	Command	Respnse	Description
Enable Modbus	5A 05 15 01 75	5A 05 15 01 75	Save and reboot to take effect
			The default setting is:
Strength			When strength is below 100, Dist
threshold and	5A 07 22 XX LL	5A 07 22 XX LL	will output 65535:
distance under	HH SU	HH SU	XX=1000/10=10(DEC)=0A(HEX)
threshold			65535(DEC)=FFFF(HEX)
			LL(Low bit)=FF,HH(High bit)=FF
Save setting	5A 04 11 6F	5A 05 11 00 70	

Table 3- 8 General command of Modbus protocol

Function	Command	Response	Description
			DH: High 8 bits of distance
Dond distance	01 03 00 00 00	01 03 02 DH DL	DL: Low 8 bits of distance
Read distance	01 84 0A	CL CH	CH: High 8 bits of CRC
			CL: Low 8 bits of CRC
Read distance	01 03 00 00 00	01 03 04 DH DL	SH: High 8 bits of signal strength
and signal	02 C4 0B	SH SL CL CH	SL: Low 8 bits of signal strength

ctropotle			
strength			
Read firmware	01 03 00 06 00	01 03 04 00 VM	VM: Main version number
version	02 24 0A	VS VC CL CH	VS: Sub-version number
			VC: Revised version number
			BH1: High 8 bits of baud rate
			BH2: Secondary high 8 bits of
			baud rate
	01 06 00 83	01 06 00 83	BL1: Secondary low 8 bits of
	BH1 BH2 CL CH	BH1 BH2 CL CH	baud rate
Set baud rate	01 06 00 84	01 06 00 84 BL1	BL2: Low 8 bits of baud rate
	BL1 BL2 CL CH	BL2 CL CH	For example:
	DET DEZ CE CIT	BLZ CL CIT	Set baud rate to 9600
			(0x00002580):
			BH1=00 BH2=00 CL=78 CH=22,
			BL1=25 BL2=80 CL=D2 CH=D3
			IH: High 8 bits of slave ID
	01 06 00 85 IH IL CL CH	01 06 00 85 IH IL CL CH	IL: Low 8 bits of slave ID
Modify slave ID			For example:
			Modify slave ID to 0x0002:
			IH=00 IL=02 CL=19 CH=E2
			FH: High 8 bits of frame rate
			FL: Low 8 bits of frame rate
Modify frame	01 06 00 86 FH	01 06 00 86 FH	For example:
rate	FL CL CH	FL CL CH	Modify frame rate to 100
			(0x0064):
			FH=00 FL=64 CL=69 CH=C8
			LH: High 8 bits of sampling
			frequent in low power
			consumption mode
			LL: Low 8 bits of sampling
Low power	01 06 00 88 LH	01 06 00 88 LH	frequent in low power
consumption	LL CL CH	LL CL CH	consumption mode
mode			For example:
			Set it to 5Hz low power
			consumption mode,
			LH=00 LL=05 CL=C9 CH=E3
	01 06 00 80 00	01 06 00 80 00	_ , , ,
Save setting			Save and reboot to take effect

Disable Modbus	01 06 00 82 00	01 06 00 82 00	Cave and reheat to take offert
Disable Modbus	01 E8 22	01 E8 22	Save and reboot to take effect
Restore factory	01 06 00 89 00	01 06 00 89 00	
setting	00 58 20	00 58 20	

Warning

The RTU mode is only supported for communication in serial communication.

For example:

1) Enable Modbus protocol in RS-485 serial communication mode:

5A 05 15 01 75 //Enable Modbus protocol

5A 04 11 6F //Save settings

Enter Modbus protocol mode after rebooting.

2) Disable Modbus protocol:

01 06 00 82 00 01 E8 22 //Default address is 0x01, disable Modbus protocol

01 06 00 80 00 00 88 22 //Default address is 0x01, save setting

Exit Modbus protocol after rebooting.

3.2 CAN Communication Protocol

3.2.1 Communication Protocol

The CAN communication protocol of TFmini-i supports customer-defined protocol parameters or customized services, and the CAN protocol baud rate and ID can be modified. The CAN protocol is shown in Table 3- 9.

Table 3- 9 CAN communication protocol of TFmini-i

Characteristics	Default values
Communication interface	CAN
Baud rate	250kbps
Transmitting ID	0x0000003
Receiving ID	0x0000003
Frame format	Standard frame

Warning

- 0 is the broadcast ID and cannot be set as transmitting/receiving ID.
- 2 The following baud rates are supported: 1000kbps, 900 kbps, 800 kbps, 666 kbps, 500 kbps, 400 kbps, 250 kbps, 200 kbps, 160 kbps, 125 kbps, 100 kbps.

3.2.2 CAN Communication Data Frame

The data protocol of CAN is shown in Table 3- 10. Each data frame consists of 8 bytes and the data contains the distance (unit: cm), signal strength and timestamp (unit: ms).

Table 3-	10 The date	frame forn	nat of CAN cor	nmunication
Table 5-	io ille uale	'ilallie lulli	IAL UI CAIN LUI	IIIIIUIIICALIC

Data byte	Definition	Description
Byte0	Dist_L	Low 8 bits of distance
Byte1	Dist_H	High 8 bits of distance
Byte2	Strength_L	Low 8 bits of signal strength
Byte3	Strength_H	High 8 bits of signal strength
Byte4	Timestamp	Low 8 bits of timestamp
Byte5	Timestamp	Secondary low 8 bits of timestamp
Byte6	Timestamp	Secondary high 8 bits of timestamp
Byte7	Timestamp	High 8 bits of timestamp

3.2.3 CAN Bus Network

The CAN bus network is mainly hung in CAN_H and CAN_L, and each node performs serial differential transmission of signals through two lines. In order to avoid signal reflection and interference, it is recommended to connect 120Ω end point resistors at both ends of the bus, as shown in Figure 3- 1.

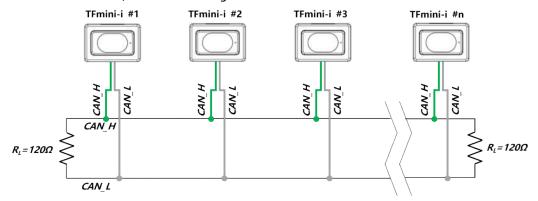


Figure 3- 1 CAN bus network of TFmini-i

The maximum recommended number of cascading stations for CAN networks is shown in the table below.

Table 3- 11 The maximum recommended number of cascading stations for CAN networks

Baud rate	Frame rate	Maximum number
800kbps	100Hz	6
500kbps	100Hz	15
250kbps	100Hz	20

Note

It is recommended to contact Benewake to communicate the details of use to complete networking requirements.

3.2.4 Parameter Configuration of CAN Communication

The configuration command format of CAN communication is shown as below.

Table 3- 12 The configuration command format

Byte	0	1	2	3	4	5-8	9-12	13
Description	Header	Length	ID	Туре	Baudrate	Recv_id	Trans_id	Check_sum
Default	0x5A	0x0E	0x51	0	0x08	0x00000003	0x00000003	SU

Type: 0(Standard Frame), 1(Extended Frame);

Recv_id: TFmini-i receiving ID, Little Endian;

Send_id: TFmini-i transmitting ID, Little Endian.

Baudrate: The code of baud rate, default 250kbps, corresponding to 0x08. The relation

between baud rate(unit: kbps) and Byte4 is shown as below:

Table 3- 13 The byte4 value corresponds to the baud rate

Byte4 value	0	1	2	3	5	6
Baud rate (unit: kbps)	1000	900	800	666	500	400
Byte4 value	8	10	11	14	16	
Baud rate (unit: kbps)	250	200	160	125	100	

Example of configuration:

Example1: Standard frame, Baud rate 500kbps, receiving ID=0x00000010, transmitting

ID=0x00000020

Command: 5A 0E 51 00 05 10 00 00 00 20 00 00 00 EE

Example2: Extended Frame, Baud rate 250kbps, receiving ID=0x0000AABB, transmitting

ID=0x0000CCDD

Command: 5A 0E 51 01 08 BB AA 00 00 DD CC 00 00 D0

3.2.5 Other Parameter Configuration

Table 3- 14 General parameter configuration of TFmini-i

Function	Command	Response	Description
Read firmware	EA 04 01 EE	5A 07 01 V1 V2	Version V3.V2.V1
version	5A 04 01 5F	V3 SU	Version vs.vz.vi
Frame rate(1)	5A 06 03 LL HH	5A 06 03 LL HH	1-100Hz, default 100Hz
Frame rate①	SU①	SU	LL: Low 8 bits of frame rate

			HH: High 8 bits of frame rate
Trigger	5A 04 04 62	Data frame	Set frame rate to 0, detection can be
detection	5A 04 04 62	Data Ifame	triggered with this command
System reset(2)	5A 04 02 60	5A 05 02 00 61	Succeeded
System reset③	5A 04 02 00	5A 05 02 01 62	Failed
Disable/Enable	5A 05 07 00 66	5A 05 07 00 66	Disable data output
output	5A 05 07 01 67	5A 05 07 01 67	Enable data output
			The default setting is:
Strength			When strength is below 100, Dist will
threshold and	5A 07 22 XX LL	5A 07 22 XX LL	output 65535:
distance under	HH SU	HH SU	XX=1000/10=10(DEC)=0A(HEX)
threshold			65535(DEC)=FFFF(HEX)
			LL(Low bit)=FF,HH(High bit)=FF
Restore to	5A 04 10 6E	5A 05 10 00 6F	Succeeded
factory settings	5A 04 10 6E	5A 05 10 01 70	Failed
Cave setting(4)	EA 04 11 6F	5A 05 11 00 70	Succeeded
Save setting(4)	ave setting@ 5A 04 11 6F	5A 05 11 01 71	Failed
Enable/Disable	5A 05 60 01 C0	5A 05 60 01 C0	Enable 120Ω terminal resistor
120Ω terminal	EA 05 (0 00 D5	5 A OF CO OO BE	Disable 1300 towninal resistan
resistor⑤	5A 05 60 00 BF	5A 05 60 00 BF	Disable 120Ω terminal resistor

Warning

- The customized frame rate should be calculated by the formula: 200/n (n is an integer with ≥ 2).
- 2 SU is checksum, checksum is disable by default.
- 3 Please keep power on and wait 1s after sending system reset command, otherwise the settings will not take effect.
- After parameters configuration, send saving settings command to save the configuration, otherwise the settings will not take effect.
- 5 120Ω terminal resistor is disable in default.