

# TF350 RS-485 / RS-232





# **PREFACE**

#### Dear users:

Thank you for choosing Benewake products. For the purpose of offering better operation experience to you, we hereby write this manual for an easier and simpler operation of our product, hoping to better solve the common problems you may meet. This user manual contains the relevant information on product introduction, usage and maintenance of TF350 RS-485 / RS-232, covers the product operation introduction and common problem solutions. Please read this manual carefully before using the product. Remember the precautions to avoid hazards, and please follow the described steps in the manual when using it.

If you have any problems in the process of usage, you are welcome to contact Benewake at any time for help.

#### **Contact Details**

Official website: en.benewake.com

TEL: +86-10-57456983

Technical questions, please contact: <a href="mailto:support@benewake.com">support@benewake.com</a>

Consult sale information or request brochure, please contact: bw@benewake.com

### **Headquarters Address**

Benewake (Beijing) Co., Ltd.

3rd Floor, Haiguo Jiaye Sci-Tech Park, Haidian District, Beijing, China

#### **Copyright Statement**

This User Manual is copyright © of Benewake. Please do not modify, delete or translate the description of this manual contents without the official written permission from Benewake.

#### Disclaimer

As our products are constantly improving and updating, the specifications of TF350 RS-485 / RS-232 are subject to change. Please refer to the official website for latest version.



# **CONTENTS**

| 1   | OVE  | RVIEW1                                             |
|-----|------|----------------------------------------------------|
|     | 1.1  | Failure scenarios1                                 |
|     | 1.2  | Symbols and document conventions                   |
| 2   | PRO  | DUCT DESCRIPTION3                                  |
|     | 2.1  | Appearance Overview3                               |
|     | 2.2  | Dimensional drawing3                               |
|     | 2.3  | Measuring principle4                               |
|     | 2.4  | Technical specification4                           |
|     | 2.5  | FoV6                                               |
| 3   | ELEC | TRICAL INSTALLATION7                               |
|     | 3.1  | Pin and wire color assignment                      |
|     | 3.2  | Connector8                                         |
|     | 3.3  | Wire cross-sections8                               |
|     | 3.4  | General conditions for data interface              |
|     | 3.5  | Wiring the RS-232 Interface9                       |
|     | 3.6  | Wiring the RS-485 Interface10                      |
| 4   | COM  | IMUNICATION PROTOCOLS 11                           |
|     | 4.1  | Communication protocol                             |
|     | 4.2  | Data frame11                                       |
|     | 4.3  | Modbus                                             |
|     |      | 4.3.1 Protocol description                         |
|     |      | 4.3.2 Function code                                |
|     |      | 4.3.3 Accessible register address                  |
|     |      | 4.3.4 Common commands for Modbus                   |
| 5   | CUS  | TOM CONFIGURATION16                                |
|     | 5.1  | Command protocol                                   |
|     | 5.2  | Common commands                                    |
|     | 5.3  | Command editing 18                                 |
| 6   | ОРТ  | IONAL ACCESSORIES 19                               |
|     | 6.1  | Self-cleaning module                               |
| 7   | QUI  | CK START GUIDE                                     |
|     | 7.1  | Connection and basic test20                        |
|     | 7.2  | Troubleshooting guide for initial test             |
|     | 7.3  | Working mode                                       |
|     | 7.4  | Influences of object surfaces on the measurement22 |
| 8   | TRO  | UBLESHOOTING 26                                    |
| Δtt | achm | ent 1: Reflectivity of Different Materials 28      |



# 1 OVERVIEW

The Reference Manual is a complement to the Operating Instructions for TF350. The Operating Instructions for TF350 describes how to set up and configure the interfaces.

The Reference Manual contains detailed information about the interfaces including syntax and available functionality. It focuses on TF350 specific topics and does not describe the basic technology behind each interface.

The details of the result output formatting and the contents and syntax of the command channels are shared by several interfaces. They are described in an appendix valid for all relevant interfaces.

## 1.1 Failure scenarios

As a precision optical distance sensor, TF350's performance is greatly affected by environment. Certain scenarios will even damage TF350. Each of these failure scenarios have been tested in real field tests.

Table 1 Failure scenarios of TF350

| Scenario | Description                                                             | Scenario | Description                                                 |
|----------|-------------------------------------------------------------------------|----------|-------------------------------------------------------------|
|          | Do not cover the laser window.                                          |          | Avoid moving objects in the detection field.                |
|          | Avoid the presence of heavy smoke, fog and rain in the detection field. | X        | Avoid condensation.                                         |
| * X      | Avoid direct exposure to high pressure cleaning.                        |          | Avoid exposure to strong light source with same wavelength. |





Do not exposure to corrosive liquids.



Avoid extreme vibrations.



Do not use in extremely low temperature environments.



Do not use in extremely high temperature environments.



Avoid exposure to sudden and extreme temperature changes.



Avoid direct exposure to another LiDAR with same wavelength.

# 1.2 Symbols and document conventions

The following symbols and conventions are used in this document:



#### WARNING

Indicates a situation presenting possible danger, which may lead to death or serious injuries if not prevented.



## **CAUTION**

Indicates a situation presenting possible danger, which may lead to moderate or minor injuries if not prevented.



## **NOTICE**

Indicates a situation presenting possible danger, which may lead to property damage if not prevented.



### **NOTE**

Indicates useful tips and recommendations.



# 2 PRODUCT DESCRIPTION

# 2.1 Appearance Overview

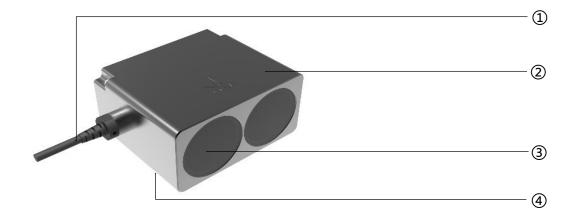



Figure 1 Module view of TF350

- ① Cable with male connector, Molex SD-51021-007, 7pin also called MH1.25-7P-W/B
- ② Laser window (Receiving)
- 3 Laser window (Emitting)
- 4 3mm diameter hole (6mm deep) for mounting (6x)

# 2.2 Dimensional drawing

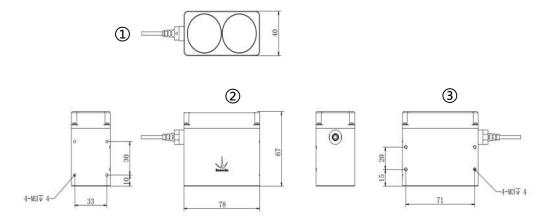



Figure 2 Dimensional drawing of TF350 (① Front; ② Top; ③ Bottom; Unit: mm)



# 2.3 Measuring principle

TF350 is a typical Pulse Time of Flight (PToF) sensor. It adopts an incoherent energy receiving mode, and the measurement is mainly based on Pulse counting.

TF350 emits a narrow pulse laser, which is collimated by the transmitting lens, which enters the receiving system after being reflected by the measured target and is focused on the APD detector by the receiving lens. The time between the transmitted signal and the received signal is calculated through the circuit amplification and filtering, and the distance between TF350 and the measured target can be calculated through the speed of light.

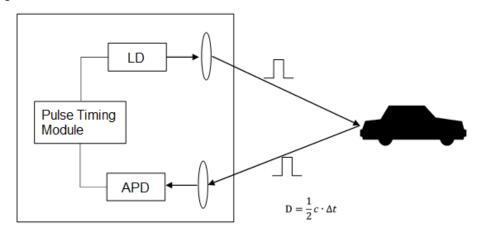



Figure 3 Pulsed time of flight (PToF)

# 2.4 Technical specification

Table 2 Data sheet of TF350

|                               | Parameters                         | Minimum                 | Typical  | Maximum |
|-------------------------------|------------------------------------|-------------------------|----------|---------|
|                               | Range (@90% reflectivity, 0klux)   | 0.2m                    |          | 350m    |
|                               | Range (@10% reflectivity, 0klux)   | 0.2m                    |          | 110m    |
|                               | Range (@90% reflectivity, 100klux) | 0.2m                    |          | 300m    |
| Performance                   | Range (@10% reflectivity, 100klux) | 0.2m                    |          | 100m    |
| Periormance                   | Accuracy                           | ±10cm (<10m), 1% (≥10m) |          | (≥10m)  |
|                               | Distance resolution                |                         | 1cm      |         |
|                               | Frame rate                         | 1Hz                     | 100Hz    | 1000Hz  |
|                               | Repeatability                      |                         | 1σ: <3cm |         |
|                               | Minimum                            | Typical                 | Maximum  |         |
| Optical                       | Light source                       |                         | LD       |         |
| parameters Central wavelength |                                    |                         | 905nm    |         |



|             | Photobiological safety        | С               | lass1(EN608             | 25)     |
|-------------|-------------------------------|-----------------|-------------------------|---------|
|             | FoV                           |                 | 0.35°                   |         |
|             | Ambient light immunity        |                 | 100Klux                 |         |
| Environment | Operation temperature         | -25°C           |                         | 60℃     |
|             | Enclosure rating              |                 | IP67                    |         |
|             | Supply voltage                | 5V DC           |                         | 24V DC  |
|             | Average current               | ≤150mA @        | ıA @ 5V, ≤80mA @ 12V, ≤ |         |
|             |                               | 50mA @ 24V      |                         |         |
|             | Power consumption             |                 | ≤1W                     |         |
| Connections | Overvoltage protection        |                 |                         | 300V    |
|             | Polarity protection           |                 |                         | 200V    |
|             | Communication interface level |                 | LVTTL                   |         |
|             |                               |                 | (3.3V)                  |         |
|             | Communication interface       | RS-485 / RS-232 |                         |         |
|             | Dimension                     | 78mm*67n        | nm*40mm(L'              | *W*H)   |
|             | Housing                       | Aluminum alloy  |                         |         |
| Others      | Optical window                | Infrared op     | tical glass (I          | HWB760) |
| Others      | Storage temperature           | -40°C           |                         | 85℃     |
|             | Weight                        | 222g ± 3g       |                         |         |
|             | Cable length                  |                 | 70cm                    |         |



## **NOTICE**

Only the frame rate satisfying the following formula is supported.

Frame rate = 
$$a \times 10^b$$
,  $a \in \{1,2,3,4,5,6,7,8,9\}$ ,  $b \in \{0,1,2,3\}$ 

If a value which does not satisfy this formula is set, TF350 will set its frame rate to 100Hz. The normal frame rate is under 1kHz, but its maximum frame rate can reach as much as 7kHz. Please contact us if you need upper frame rate.

The basic technical specifications, like accuracy and repeatability, are measured with white background board (90% reflectivity) at 0klux condition.



## 2.5 FoV

The field-of-view, FoV, is the angle covered by the LiDAR sensor. The horizontal FoV of TF350 is about 0.35° and the vertical FoV of TF350 is approx. 0.1°.

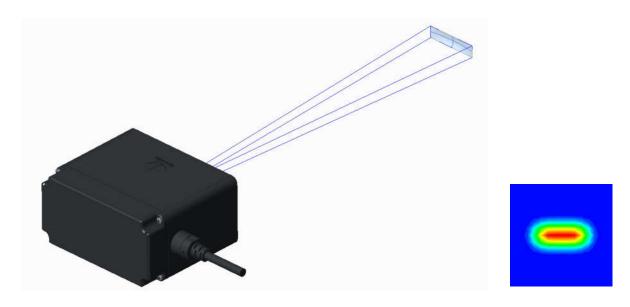



Figure 4 FoV of TF350. Horizontal divergence 0.35°, vertical divergence 0.1°



## **NOTICE**

0.35° and 0.15° are theoretic values. Because the manufacturing error and the installing error exist, there is divergence between each TF350's actual FoV and its theoretic values.

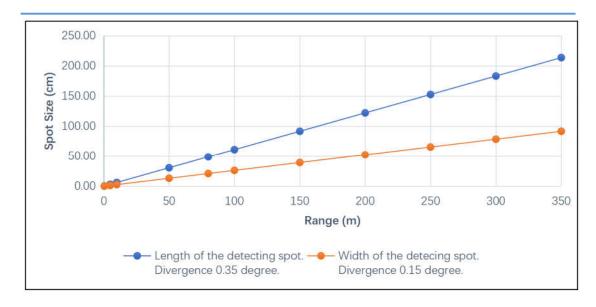



Figure 5 Spot size of TF350 at different ranges



# 3 ELECTRICAL INSTALLATION

# 3.1 Pin and wire color assignment

TF350's cable has six 26 AWG wires. The connector is Molex SD-51021-007 1.25 W/B-7Pin (MH1.25-7P-W/B).

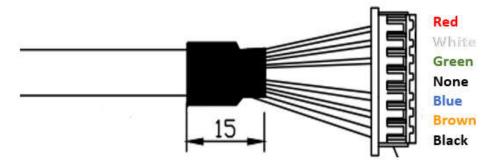



Figure 6 Male connector, Molex SD-51021-007 1.25 W/B-7Pin

Table 3 Pin assignment on 7-pin male connector

| 1 | VCC                 | Red   | DC 5-24V                 |
|---|---------------------|-------|--------------------------|
| 2 | RS-485-B/RS-232-RXD | White | RS-485-B/RS-232 Receive  |
| 3 | RS-485-A/RS-232-TXD | Green | RS-485-A/RS-232 Transmit |
| 4 | N/A                 | N/A   | N/A                      |
| 5 | UART_RXD            | Blue  | UART receive (Debug)     |
| 6 | UART_TXD            | Brown | UART Transmit (Debug)    |
| 7 | GND                 | Black | Ground                   |



## **Notice**

The UART interface of TF350 RS-485/RS-232, PIN 5 and PIN 6, is a debug interface. Please do not use it.



## 3.2 Connector

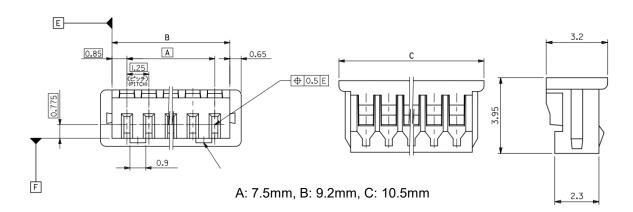



Figure 7 Dimension drawing of connector: Molex SD-51021-007 1.25 W/B-7Pin

## 3.3 Wire cross-sections



#### **CAUTION**

If you use flexible connecting cables with stranded wire, then you must not use ferrules when connecting the wires to the terminals on TF350.

Wire all connections with copper cables!

- Use the following wire cross-sections:
- supply voltage at least 0.13 mm<sup>2</sup> (approx. 26 AWG), if local power supply in the immediate vicinity.
- supply voltage at least 0.21 mm<sup>2</sup> (approx. 24 AWG) at maximum length of 2m (6.562 ft), if the connection is made to an existing 24 V DC supply.
- switching outputs minimum 0.13 mm<sup>2</sup> (approx. 26 AWG), maximum cable length 2m (6.562 ft) with 0.21 mm<sup>2</sup> (approx. 24AWG).
- data interface minimum 0.13mm<sup>2</sup> (approx. 26AWG).
  - > Lay all cables such that there is no risk of tripping and all cables are protected against damage.

On the usage of a typical power supply with a nominal voltage of 24V DC  $\pm 5\%$ , the following maximum cable lengths are allowed for the supply of the operating voltage:



Table 4 Maximum cable lengths for the supply voltage

| 0.13 mm2 (approx. 26AWG) | 4 m (13.1 ft)   |
|--------------------------|-----------------|
| 0.32 mm2 (approx. 22AWG) | 10 m (32.81 ft) |
| 0.81 mm2 (approx. 18AWG) | 20 m (65.62 ft) |

# 3.4 General conditions for data interface

The table below shows the recommended maximum length of cable as a function of the data transmission rate selected.

Table 5 Maximum cable lengths for the data interfaces

| RS232 | 115200 bps | 10 m (32.81ft) |
|-------|------------|----------------|
| RS485 | 115200 bps | 10 m (32.81ft) |



### **NOTICE**

With appropriate cable termination, termination in accordance with related specification.

• Use screened cable(twisted-pair) with at least 26 AWG.

# 3.5 Wiring the RS-232 Interface

♦ Pay attention to max. cable length as per section 3.4 "General conditions for the data interface".

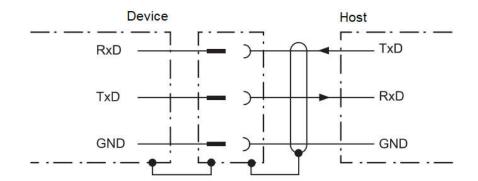



Figure 8 Wiring of the RS-232 interface



# 3.6 Wiring the RS-485 Interface

♦ Pay attention to max. cable length as per section 3.4 "General conditions for the data interface".

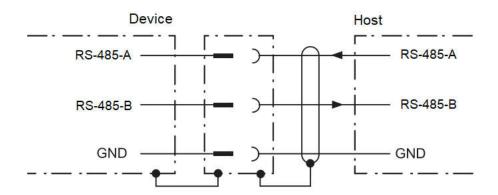



Figure 9 Wiring of the RS-485 interface



# 4 Communication Protocols

The industrial version of TF350 supports two communication interfaces, RS-232 and RS-485. The default interface is RS-485. These two interfaces cannot work simultaneously. The communication interface can be switched by certain command.



## **NOTICE**

The RS-485 interface in industrial TF350 is a debug interface. Please do not use it.

# 4.1 Communication protocol

Table 6 Communication protocol of the RS-232 protocol

| Baud rate | 115200 | Configurable     |
|-----------|--------|------------------|
| Data bit  | 8      | Non-configurable |
| Stop bit  | 1      | Non-configurable |
| Parity    | None   | Non-configurable |

# 4.2 Data frame

A standard data frame consists of 9 bytes of hexadecimal numbers, which contains distance and signal strength.

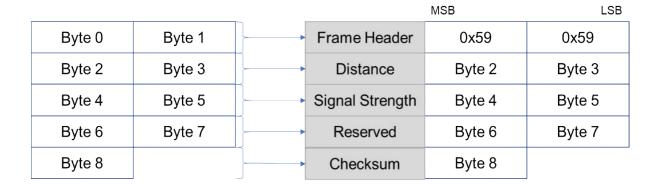



Figure 10 Data communication: User protocol frame format of RS-485



# 4.3 Modbus

The RS-485 interface of TF350 supports Modbus protocol.



### **NOTICE**

The TF350 RS485 interface is in half-duplex mode. Based on reliability considerations, it is not recommended to use a baud rate above 115200 for communication.

## 4.3.1 Protocol description

The communication protocol format of Modbus is different from it of the RS-232 and RS-485 interface. Check the following tables for detailed protocols.

Table 7 Command format of Modbus

| 01 (Default) | 03 | 00 | 00 | 00 | 01 | xx | xx |
|--------------|----|----|----|----|----|----|----|

Table 8 Data frame format of Modbus

| 01 (Default) | 03 | 02 | xx | XX | XX | xx |
|--------------|----|----|----|----|----|----|



## NOTICE

All the data mentioned in the protocol are in hexadecimal.

## 4.3.2 Function code

The Modbus of TF350 only supports the basic function of reading and writing register. The function codes are listed in the following table.

Table 9 List of function codes of Modbus

| 03 | Read register  |
|----|----------------|
| 06 | Write register |



## 4.3.3 Accessible register address

Table 10 List of accessible register address of function code (0x03)

| 00 00 | Dist                              | Distance value                            |
|-------|-----------------------------------|-------------------------------------------|
| 00 01 | Strength                          | Signal strength. Not currently supported. |
| 00 03 | Upper 16 bits of time<br>stamp    | Upper 2 bytes of time stamp. Unit: ms     |
| 00 04 | Lower 16 bits of time<br>stamp    | Lower 2 bytes of time stamp. Unit: ms     |
| 00 06 | Upper 16 bits of firmware version | 0x00 and main version number              |
| 00 07 | Lower 16 bits of firmware version | Sub-version and revised version number    |

Table 11 List of accessible register address of function code (0x06)

| 00 80 | Save settings              | Perform 'Save' operation with any data being written to the register.                                             |
|-------|----------------------------|-------------------------------------------------------------------------------------------------------------------|
| 00 81 | Shut down / Reboot         | 0x00: Shut down<br>0x01: Reboot                                                                                   |
| 00 82 | Disable Modbus             | 0x01: Disable Modbus                                                                                              |
| 00 83 | Upper 16 bits of baud rate | Save and reboot to take effect.                                                                                   |
| 00 84 | Lower 16 bits of baud rate | Save and reboot to take effect.                                                                                   |
| 00 85 | Slave ID                   | Save and reboot to take effect.                                                                                   |
| 00 86 | fps                        | Save and reboot to take effect.                                                                                   |
| 00 87 | Working mode               | Save and reboot to take effect.<br>0x00: Continuous working mode<br>0x01: Command-trigger mode                    |
| 00 89 | Restore default            | Perform 'Restore default' operation with any data being written to the register.  Save and reboot to take effect. |



### 4.3.4 Common commands for Modbus

The default interface of industrial TF350 is general RS-485 protocol. Send commands listed in Table 12 Command used to enable Modbus protocol in RS-485 interface to enable Modbus protocol.

Table 12 Command used to enable Modbus protocol in RS-485 interface

| Enable Modbus         | 5A 05 6F 00 CE      | Same as command | Save and reboot to take effect |
|-----------------------|---------------------|-----------------|--------------------------------|
| Set Modbus<br>Address | 5A 05 70 ADDR<br>SU | 5A 05 70 00 CF  | /                              |



### **WARNING**

TF350 only supports RTU mode to communicate in serial link.

The default address of Modbus is 0x01. The commands listed in the following table are based on default address. If the address is changed, the commands need to make corresponding changes. See 4.3.1 for detailed information.

The commands listed in the following table will only take effect under Modbus protocol. Do not send the command that is not in the list below.

Table 13 List of common commands of Modbus

| Obtain distance                           | 01 03 00 00 00<br>01 84 0A | Data frame:<br>01 03 02 DH<br>DL CL CH | DH: Upper 8 bits of distance DL: Lower 8 bits of distance CH: Upper 8 bits of CRC CL: Lower 8 bits of CRC                                                                         |
|-------------------------------------------|----------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Obtain distance<br>and signal<br>strength | 01 03 00 00 00<br>02 C4 0B | 01 03 04 DH<br>DL SH SL CL<br>CH       | DH: Upper 8 bits of distance DL: Lower 8 bits of distance SH: Upper 8 bits of signal strength SL: Lower 8 bits of signal strength CH: Upper 8 bits of CRC CL: Lower 8 bits of CRC |



| Obtain firmware<br>version | 01 03 00 06 00<br>02 24 0A                                   | 01 03 04 00<br>VM VS VC CL<br>CH                                              | VM: Main version number VS: Sub-version number VC: Revised version number                               |
|----------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Set baud rate              | 01 06 00 83 BH1<br>BH2 CL CH<br>01 06 00 84 BL1<br>BL2 CL CH | 01 06 00 83<br>BH1 BH2 CL<br>CH<br>01 06 00 84<br>BL1 BL2 CL CH               | Set baud rate to 9600<br>(0x00002580):<br>BH1=00 BH2=00 CL=78<br>CH=22,<br>BL1=25 BL2=80 CL=D2<br>CH=D3 |
| Change Slave ID            | 01 06 00 85 IH IL<br>CL CH                                   | 01 06 00 85 IH<br>IL CL CH                                                    | IH: Upper byte of ID IL: Lower byte of ID Change slave ID to 0x0002: IH=00 IL=02 CL=19 CH=E2            |
| Set frame rate             | 01 06 00 86 FH<br>FL CL CH                                   | Set frame rate to 100H<br>01 06 00 86<br>FH FL CL CH<br>FH=00 FL=64 CL=69 CH= |                                                                                                         |
| Save setting               | 01 06 00 80 00<br>00 88 22                                   | 01 06 00 80<br>00 00 88 22                                                    | Save and restart to take<br>effect                                                                      |
| Disable Modbus             | 01 06 00 82 00<br>01 E8 22                                   | 01 06 00 82<br>00 01 E8 22                                                    | Save and restart to take<br>effect                                                                      |



# 5 CUSTOM CONFIGURATION

# 5.1 Command protocol

To meet the need of different customers, TF03 released several configuration parameters. These parameters, such as data format, frame rate, could be modified by certain command. All the parameters will be stored in flash after configured successfully and customers don't need to configure again when restart.

Table 14 Description of TF03 command protocol

| Byte 0          | Header    | Fixed to 0x5A                                                 |
|-----------------|-----------|---------------------------------------------------------------|
| Byte 1          | Len       | The length of the command frame (unit: Byte)                  |
| Byte 2          | ID        | Identifies the function of each command                       |
| Byte 3~Byte N-2 | Payload   | Different meanings and lengths in different ID command frames |
| Byte N-1        | Check sum | the lower 8 bits of the sum of the first N-2 bytes            |

# 5.2 Common commands

Table 15 List of TF03's common commands

| Obtain firmware version | 5A 04 01 5F                               | 5A 07 01 VA VB<br>VC SU | The version<br>number<br>VC.B.A             | 1       |
|-------------------------|-------------------------------------------|-------------------------|---------------------------------------------|---------|
| System reset            | 5A 04 02 60                               | 5A 05 02 00 61          | /                                           | /       |
| Modify frame<br>rate    | 5A 06 03 LL HH<br>SU                      | Same as<br>command      | LL: lower 8<br>bits<br>HH: higher 8<br>bits | 100Hz   |
| Output control          | On: 5A 05 07 01<br>67<br>Off: 5A 05 07 00 | Same as<br>command      | /                                           | Enabled |



|                                      | 66                                                     |                    |                                                   |          |
|--------------------------------------|--------------------------------------------------------|--------------------|---------------------------------------------------|----------|
|                                      |                                                        |                    |                                                   |          |
| Enable<br>command<br>triggering mode | 5A 05 07 00 66                                         | Same as<br>command | /                                                 | Disabled |
| Trigger<br>measurement               | 5A 04 04 62                                            | Data frame         | Only works in<br>command<br>triggering<br>mode    | /        |
| Change baud<br>rate                  | 5A 08 06 H1 H2<br>H3 H4 SU                             | Same as<br>command | See 5.3<br>Command<br>editing                     | 115200   |
| Restore default<br>settings          | 5A 04 10 6E                                            | 5A 05 10 00 6F     | /                                                 | /        |
| Save settings                        | 5A 04 11 6F                                            | 5A 05 11 00 70     | /                                                 | /        |
| Over range<br>threshold setting      | 5A 06 4F LL HH<br>SU                                   | 5A 05 4F 00 AE     | Unit: cm LL: lower 8 bits HH: higher 8 bits       | 35000    |
| Switch<br>communication<br>interface | RS-485: 5A 05<br>45 01 A5<br>RS-232: 5A 05<br>45 02 A6 | 5A 05 45 00 A4     | /                                                 | RS-485   |
| Modify RS-232<br>arbitration ID      | 5A 08 50 H1 H2<br>H3 H4 SU                             | 5A 05 50 00 AF     | ID = (H4<<24)<br>+(H3<<16)<br>+(H2<< 8) +H1       | 0x03     |
| Modify RS-232                        | 5A 08 51 H1 H2<br>H3 H4 SU                             | 5A 05 51 00 B0     | ID=(H4<<24)<br>+(H3<<16)<br>+(H2<< 8) +H1         | 0x3003   |
| Modify baud<br>rate of RS-232        | 5A 08 52 H1 H2<br>H3 H4 SU                             | 5A 05 52 00 B1     | Baud<br>rate=(H4<<24)<br>+(H3<<16)<br>+(H2<<8)+H1 | 1Mbits/s |



## **WARNING**

Do not send the command that is not in the list above.





#### **NOTE**

Baud rate of RS-485 can be set to 9600, 14400, 19200, 38400, 56000, 57600, 115200, 128000, 230400, 256000, 460800, 512000, 750000, and 921600. If other value were set, TF03 will set it to 115200.

# 5.3 Command editing

This section describes the Command Channel of TF03 which is used to read and set TF03's working parameters. The command channel is available via all the interfaces.

A standard TF03 command consists of frame header, command length, command ID, parameters and checksum. Follow these steps to generate a command:

- Choose the right command ID and confirm its length
- Convert parameter from the decimal value to hexadecimal value
- Fill the hexadecimal parameter into the command
- Calculate the checksum and fill its low 8-bits into the command

For example, changing the baud rate to 460800. Firstly, choose the ID of changing frame rate, which is 0x06. Secondly, change 460800 (decimal number) to hexadecimal number, which is 0x00 07 08 00. Thirdly, fill the parameter into the command, like **5A 08 06 00 08 07 00 SUM**. Finally calculate the sum of the first 7bytes and take its low 8bits, we will have the complete command, **5A 08 06 00 08 07 00 77**.

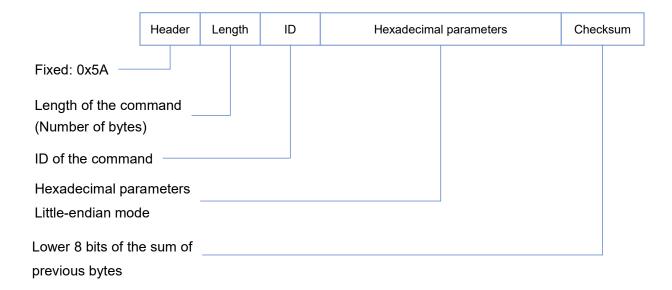



Figure 11 Command syntax of TF03



# **6 OPTIONAL ACCESSORIES**



## **NOTE**

The following accessories are not standard accessories, please contact relevant sales or technical personnel if necessary.

## 6.1 Extension cord

For testing purposes, we prepared an extension Dupont cord. See Figure 12 Extension cord for test for detailed information.

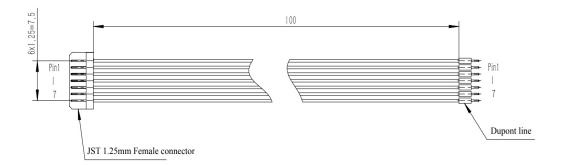



Figure 12 Extension cord for test



## **NOTE**

This extension cord is free, but it's not a standard accessory. Please contact us if needed.



## **NOTE**

The following accessories are not standard accessories, please contact relevant sales or technical personnel if necessary.



# 7 QUICK START GUIDE

## 7.1 Connection and basic test



## **NOTE**

The product package contains only TF350 and factory certificate. If you need USB converter, please contact our sales or technical support.

 Download the latest version BW\_TFDS from http://en.benewake.com/support onto your PC or laptop.



Figure 13 Benewake testing GUI for TF series

- See Figure 13 Benewake testing GUI for TF series of the GUI.
- Connect TF350 to the PC or laptop with a paired USB converter cable as shown in Figure 14 TF350 connecting to PC. The RS-485 version TF350 needs a RS-485-USB converter, and the RS-232 version TF350 needs a RS-232-USB converter.



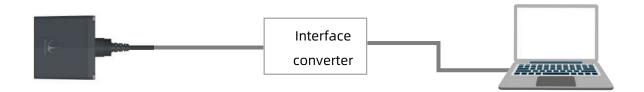



Figure 14 TF350 connecting to PC

Run BW\_TFDS.exe, choose the right baud rate and communication port, and click
 CONNECT to start the test.

# 7.2 Troubleshooting guide for initial test

In the default working mode, TF350 will automatically output data when connected to the PC following 7.1Connection and basic test. If you cannot read data from GUI properly, follow these steps to locate and solve problems.

- S1. Check if there is red light inside TF350 through its window.
  - No. Check power supply. If the power supply is normal, please contact Benewake service.
  - Yes. Proceed to S2.
- S2. Check whether the USB converter is paired with TF350. For example,

  TF350-100 RS-232 needs a USB-RS-232 converter.
  - No. Change a paired USB converter then try again.
  - Yes. Proceed to S3.
- S3. Check signal wiring. See section *3.1 Pin and wire color assignment* for detailed wiring information.
  - Incorrect. Fix wiring.
  - Correct. Proceed to S4.
- S4. Some USB converters can generate more than one COM port. Try to connect through different COM port.



- If all the COM ports don't have data output, proceed to S5.
- S5. Send the command of reading firmware version, 5A 04 01 5F, through every COM ports. Try to read response.
  - If all the COM ports have no response, please contact Benewake service.
  - If one of the COM ports has correct response, send the command of restore default, 5A 04 10 6E, through this COM port. After sending this command, if the TF350 still doesn't work, please contact Benewake service.

# 7.3 Working mode

TF350 has three different working modes.

- Automatic output mode. This is the default working mode. The default frame rate
  of this mode is 10Hz.
- Command triggering mode. In this mode, TF350 will not output data automatically.
   TF350 output measuring data only when it receives the triggering command.
- Low power consumption mode. In this mode, TF350 still output measuring data automatically. But the maximum frame rate has been restricted to 5Hz. Meanwhile its power consumption is reduced to 350mW.



#### NOTE

Only the RS-485 interface supports low power consumption mode.

# 7.4 Influences of object surfaces on the

## measurement

The signal received from a perfectly diffuse reflecting white surface corresponds to the definition of a remission of 100%. As a result of this definition, the remissions for surfaces that reflect the light bundled (mirrored surfaces, reflectors), are more than 100%.



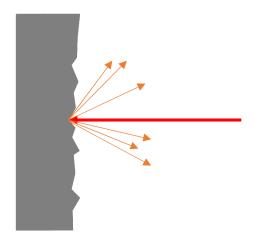



Figure 15 Reflection of the laser beam at the surface of an object

The majority of surfaces reflect the laser beam diffusely in all directions.

The reflection of the laser beam will vary as a function of the surface structure and color. Light surfaces reflect the laser beam better than dark surfaces and can be detected by the TF350 over larger distances. Brilliant white plaster reflects approx. 100% of the incident light, black foam rubber approx. 2.4%. On very rough surfaces, part of the energy is lost due to shading. The detecting range of the TF350 will be reduced as a result.

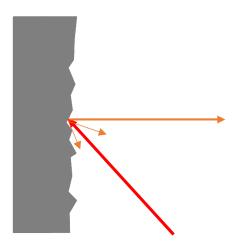



Figure 16 Reflection angle

The reflection angle is the same as the angle of incidence. If the laser beam is incident perpendicularly on a surface, the energy is optimally reflected (Figure 16 Reflection angle). If the beam is incident at an angle, a corresponding energy and detecting range loss is incurred.



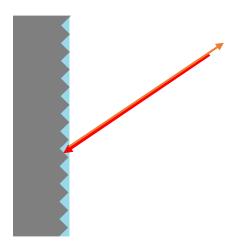



Figure 17 Degree of reflection

If the reflected energy returned is over 100% (basis: Kodak standard) the incident beam is not reflected diffusely in all directions, but is reflected in a specific direction. As a result, a large portion of the energy emitted can be received by the laser distance measurement device. Plastic reflectors ( "cats' eyes" ), reflective tape and triple prisms have these properties.

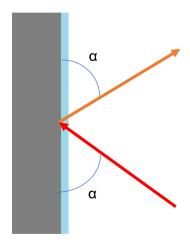



Figure 18 Mirror surfaces

At mirror surfaces the laser beam is almost entirely deflected (Figure 18 Mirror surfaces). Instead of the surface of the mirror, it is possible that the object on which the deflected laser beam is incident may be detected.



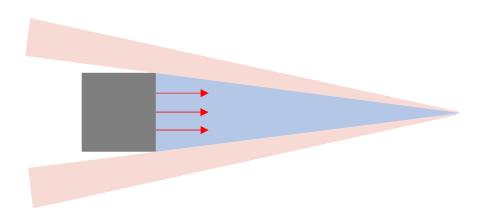



Figure 19 Object smaller than diameter of the laser beam

Objects that are smaller than the diameter of the laser beam cannot reflect all the energy of the laser light (Figure 19 Object smaller than diameter of the laser beam). The energy in the portion of the laser light that is not reflected is lost. This means that the detecting range is less than would be possible theoretically based on the surface of the object.

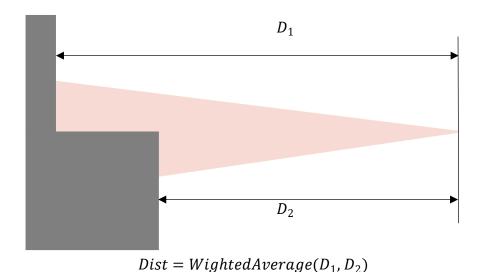



Figure 20 Staircase object

Staircase objects have two or more planes (Figure 20 Staircase object). The energy in the portion of the laser light that is reflected by different plane is different. TF350 will calculate a weighted averaging energy. The measured value will possible theoretically be the weighted average of distances from TF350 to different platform.



# 8 TROUBLESHOOTING



## **NOTICE**

## Claims under the warranty rendered void!

The housing screws of the TF350 are sealed. Claims under the warranty against Benewake will be rendered void if the seals are damaged or the device opened. The housing is only allowed to be opened by authorized service personnel.

This chapter describes how to identify and rectify errors and malfunctions during the operation of TF350.

Table 17 Troubleshooting and rectification

| Table 17 Hoableshooting an          |                                          |                                                                                                        |  |
|-------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------|--|
| Measurement exceeds                 | Optical signal was blocked.              | <ul> <li>Remove the obstacle or<br/>adjust the detecting<br/>direction.</li> </ul>                     |  |
| the allowed error.                  | The target is a low reflectivity object. | Paste a reflector on target object.                                                                    |  |
|                                     | Protective film has not been removed.    | > Remove the protective film.                                                                          |  |
| Measurements in the                 |                                          | > Carefully clean optics using                                                                         |  |
| near range with no                  | Contaminated or                          | soft, fluff-free cloth.                                                                                |  |
| measurement target.                 | scratched window.                        | If the optics are scratched,                                                                           |  |
|                                     |                                          | contact Benewake service.                                                                              |  |
|                                     | Rain or fog                              | Enable rain-fog filter                                                                                 |  |
| TF350 is not<br>transmitting a      | Wiring fault in the data connection.     | Check wiring.                                                                                          |  |
| measured result.                    | • Wrong USB converter.                   | Check USB converter.                                                                                   |  |
| Data transmitted is garbage.        | Baud rate mismatch.                      | <ul> <li>Check baud rate of the receiving device.</li> <li>Check TF350's baud rate setting.</li> </ul> |  |
| A certain target cannot be detected | The target is too     small.             | Replace it with a larger target.  Please refer to 2.5 above.                                           |  |
|                                     | <ul> <li>The target is a low</li> </ul>  | Sticking a high reflection                                                                             |  |



| reflectivity object. | sticker on the surface of |
|----------------------|---------------------------|
|                      | the measured object.      |



# Attachment 1: Reflectivity of Different Materials

The reflectivity of different materials is listed below, ranging from low to high. According to the test target and the corresponding reflectivity, we can measure whether the range of TF350 and other parameters meet the requirements.

| viietiiei tiie ra | nge of 1F350 and other parameters meet the re | equirements. |
|-------------------|-----------------------------------------------|--------------|
| 1                 | black foam rubber                             | 2.4%         |
| 2                 | black cloth                                   | 3%           |
| 3                 | black rubber                                  | 4%           |
| 4                 | Coal (varies from coal to coal)               | 4~8%         |
| 5                 | Black car paint                               | 5%           |
| 6                 | Black paper                                   | 10%          |
| 7                 | opaque black plastic                          | 14%          |
| 8                 | Clean rough board                             | 20%          |
| 9                 | newspapers                                    | 55%          |
| 10                | translucent plastic bottles                   | 62%          |
| 11                | packing case cardboard                        | 68%          |
| 12                | Clean pine                                    | 70%          |
| 13                | opaque white plastic                          | 87%          |
| 14                | white card                                    | 90%          |
| 15                | Kodak standard whiteboard                     | 100%         |
| 16                | Unpolished white metal surface                | 130%         |
| 17                | Shiny light metal surface                     | 150%         |
| 18                | stainless steel                               | 200%         |
| 19                | Reflective board, reflective adhesive tape    | >300%        |